156

Cross section of strip transmission line with
magnetic wall at the bottom side.
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Fig. 2. Dielectric-supported air-strip transmission line,
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Fig. 3. Geometry for the homogeneous problem.
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Fig. 4. Modified geometry for the homogeneous problem.

TABLE 1
NUMERICAL RESULTS

THIS METHOD GISH AND GRAHAMS
2a 2b | 2w | 2t _ METHOD

Zo vr Zo vr
2 2 16 1 22.64 . 2481 22.7 2475
2 2 4 1 58.94 . 2475 59.02 2475
2 2 4 2 103 0 L2717 102.8 2713
9 6 15 2 7260 . 2607 7268 .2606

calculation will give the same results for the two geometries. Hence
the capacitance and the charge distribution in Fig. 3 can be easily
obtained operating with Smith’s conformal mapping process on the
new dimensions in Fig. 4.

Finally, the published Fortran program [1] can be applied to the
new structures simply by introduction of a suitable Green’s function
in the series expression. For example, in the case of electric side
walls, Smith’s ¢, in [1, eq. (12)] should be written:

g (1 + K cothmg: coth mdi)pm
™" m{coth mgs(1+K coth mgy coth mdy)+K(K coth mg,+coth md1)}

There is good agreement between the numerical results obtained
with this method and the diagrams shown in [2]. This is exemplified
by Table 1 where the values of the characteristic impedance Zy, and
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the relative phase velocity @, for some geometrical configurations
considered in [2, figs. 7, 8, 12, 13] and with the same relative dielec-
tric constant of the substrate, are shown together with the values
obtained with the present method. For the sake of greater precision
the former values have been obtained by means of a computer pro-
gram, according to [2], rather than by reading the diagrams. The
geometrical dimensions are reported in Fig. 2, using the same nota-
tion as in [2].

In conclusion, the present method gives accurate results and the
process of optimization of the charge distribution is avoided as in [1].

The saving in computer time obtained is of the order of 80 to 90
percent, which is very important in the analysis and optimization
processes of complex geometrical structures.
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Conditions for Approximating the Limit-TEM Mode by
a Quasi-TEM Mode in a Ferrite-Filled
Coaxial Line

MELVIN M. WEINER

Abstract—Sufficient conditions for the quasi~TEM mode in a
ferrite-filled coaxial line are reviewed.

Using a Taylor series expansion of the Bessel functions in the
determinantal equation for the limit-TEM mode in a ferrite-filled
coaxial line, Wolff {1] has shown that the conditions

1] (ra — 7d) < 1 |s2] (ra — 1) 1 (¢))
are more general sufficient conditions than the conditions
Psifrakl  sfrekl  [s] €7 |slriki (2)

which were originally proposed by Weiner [2] for approximating the
limit-TEM mode by a quasi-TEM mode. The propagation constant
for the quasi-TEM mode in coaxial geometry was shown by Tera-
gawa et al. [2, ref. [2]-[5]] to be identical to the Suhl and Walker
equation in parallel-plane geometry.

Unfortunately, Wolff attributes conditions (1) to Brodwin and
Miller [3]. However, Brodwin and Miller [3] do not state conditions
(1), but instead state on page 497: “The results of the numerical
analysis show that the Suhl and Walker equation is a close approxi-
mation to the propagation constant [of the limit-TEM mode] for the
lossless case. The approximation is especially valid for magnetic
fields much larger than the resonant field, and for close spacing be-
tween inner and outer conductors.”

The first sentence of their statement is generally not true and was
the subject of correspondence by Weiner [2], [4] and Lewis [5].

As a test of the latter part of the second sentence, Weiner [2]
explicitly proposed conditions (1) but rejected them as not being suffi-
cient for reasons recently shown by Wolff [1] to be incorrect. Al-
though Brodwin and Miller [2] believed that conditions (2) were not
necessary, they neither proposed nor argued in support of conditions
(1). Instead they argued that the Suhl and Walker equation was
approximately valid even if conditions (1) were not satisfied [2,
entries 1 and 3 in Table I].

In conclusion, conditions (1) should not be attributed to Brodwin
and Miller, On the other hand, Wolff’s validation of conditions (1),
first mentioned by Weiner, is greatly appreciated.
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Two-Mode Waveguide for Equal Mode
Velocities : Correction

N. G. ALEXOPOULOS axp M. E. ARMSTRONG

Abstract—The T-septum waveguide was analyzed by Elliott using
the orthonormal block method. The numerical results did not com-
pare favorably with experimental measurements and it was sug-
gested that the disparity was related primarily to the assumption of
zero-thickness membranes for the septum. Later, Silvester analyzed
the T-septum waveguide using a finite-element method and found
very good agreement with the measured points, yet the septum thick~
ness was again assumed to be infinitesimal. This letter is being writ-
ten to dispel the implication that the orthonormal block method of
analysis of the T-septum waveguide suffers for lack of accuracy. The
universal curves as shown by Elliott will be presented here in cor-
rected form along with experimental results further corroborating
both Elliott’s and Silvester’s work.

Elliott’s analysis [1] of the T-septum waveguide using the ortho-
normal block method has been corroborated by recent numerical cal-
culations utilizing his theoretical formulation and by additional ex-
perimental measurements. It has been determined that errors existed
in the original computer program used for the determination, numer-
ically, of cutoff wavenumbers from the difference-mode Rayleigh—
Ritz approximation.

Fig. 1. T-septum waveguide geometry.

The T-septum waveguide geometry is indicated in Fig. 1, and the
corrected cutoff wavenumbers for the sum and difference modes are
shown in Fig. 2 for a range of septum dimensions. Fig. 3 shows the
calculated guide wavelengths for the cases k/b=0.3, 0.5 and 0.8,
along with experimentally determined guide wavelengths for these
same T-septum aspect ratios. The heavy solid curves (theoretical)
and the heavy dashed curve (experimental) in Figs. 2 and 3 give d as
a function of # such that, over the frequency range for which these
two modes propagate, their phase velocities will be equal. It is noted
that there is satisfactory correspondence between experimental and
theoretical characteristics for moderate septum insertion depths and
that the results deviate markedly for large insertion depths, possibly
because of the considerable difference between theoretical and experi-
mental T-septum models. However, in the region of interest, namely
for those values of insertion depth for which the phase velocities of
the two modes are equal, there is excellent agreement, indicating,
therefore, the validity of the theoretical model for predicting the
physical model characteristics.

For purposes of comparison the current theoretical and experi-
mental data are presented in Fig. 4 (/b=0.3) along with the theo-
retical characteristics determined earlier by Silvester (5/6=0.3) [2]
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